

Legal basis

Mainly relevant:

- > EU CO₂ Storage, Directive 2009/31/EG
- > EU GHG Emissions Monitoring Regulation (EU) 601/2012 & Implementing Regulation 2018/2066
- > German CO₂ Storage law (KSpG), under advanced amendment, offshore storage in EEZ Others:
- > international maritime conventions
- > international and various national laws and regulations ± related to CCS (Proelß & Westmark 2022, 2023)
- > technical guidelines

Legal basis

Technical guidelines are legally non-binding, however regulations could refer to such, e.g.

- ISO 27914:2017 geological storage, under advanced review
- ISO/TR 27923:2022 Injection operations, infrastructure, and monitoring
- CEN initiated work 2024 on CCU/S; CEN standards are binding for member states:
 - CO₂ streams and quality
 - pipeline and vessel transportation
 - storage, utilization
 - and accounting

Relevance: Regulation EU 2024/1735 (Net Zero Industry Act) mandates the EU Commission to publish guidelines for appropriate compositions of CO₂ streams

- EU Guidance document to 2009/31/EC No. 2:2024 on characterization and monitoring

Monitoring objects

Objects to be monitored are, free and dissolved CO₂, impurities, formation fluids
 & other properties, effects and impacts of CO₂ storage

- > reservoir
- > storage complex
- > injection facilities
- > surrounding environment
- > usable groundwater

Legal terms in German CO₂ storage law (KSpG): defined terms used terms not mentioned

zweite Ausbreitungsbarriere Reservespeicher primäre Deckschicht Reservoir **Hydraulische Einheit**

Legal requirements

- > Operator's monitoring (& monitoring after transfer of liability)
- > Monitoring concepts are required in the applications for storage permits.
- > Monitoring concepts have to be up-dated every five years considering
- > HSE, and long-term risks, & technical developments.
- > Geotechnical requirements on monitoring are specified in **Annex 2** KSpG:
- > 6 aspects are mandatory, and more technologies are "eventually" to be used.
- > Quantification of emissions and leakage from capture, transport, injection and storage of ${\rm CO_2}$ is required according to EU Regulation 601/2012 & Implementing Regulation 2018/2066 .

Some Challenges

- > Selection of monitoring methods
- > Offshore Wind-Farms
- > Site-specific monitoring plans
- > Quantification of Leakage
- > Appropriate baselines
- > Durability of equipment, technical developments, updated plans

Selection of Methods

- > Legal requirements result in a multitude of monitoring tasks.
- > A conucopia full of monitoring methods and devices potentially could be used.

Compilations of (marine) exploration and monitoring methods evaluated in a meta-study 26 publications (2002 – 2022) listing methods considered

45 methods with many variations and applications, (many useful for exploration; baseline)

Exploration (32)

Monitoring (45)

Selection of Methods

- > Various approaches were proposed, for the selection of site specific methods.
- > Criteria for selection: in Annex 2 KSpG (a.o. risk-based) or in the EU-Guidance Document
- > selection tools, such as that of the IEA-GHG

Selection of Methods

Microseismic monitoring

Above-zone pulse testing

2.0

3.0

Reservoir location	Reservoir depth	Reservoir type	Landuse at site	Monitoring phase	Monitorin	ng aims	Tool package			
Onshore	O.5-1.5 km	Aquifer	Settled	O Pre-injection	Plume	Calibrate	O Core			
Offshore	1.5-2.5 km	Oil	 Agricultural 	Injection	▼ Top-seal	Detect	○ Extra			
O Both	O 2.5-4 km	○ Gas	○ Wooded	O Post-injection	Overburden	Quantify	All			
	○ >4 km	O Coal	O Arid	O Closure	Processes	Seismicity				
			Protected			✓ Wellbores				
			0							
Tool		Rating %	Plume	Top-Seal	Overburden	Detect	Wellbores			
Tool 3D surface seismic		Rating %	ŭ	Top-Seal 3.0	Overburden 4.0		Wellbores 3.0			
	face seismic		Plume	· ·		Detect				
3D surface seismic	face seismic	75	Plume 4.0	3.0	4.0	Detect 1.0	3.0			
3D surface seismic Multicomponent sur		75 55	Plume 4.0 3.0	3.0 3.0	4.0 3.0	1.0 0.0	3.0 2.0			
3D surface seismic Multicomponent sur Tracers		75 55 50	Plume 4.0 3.0 1.0	3.0 3.0 2.0	4.0 3.0 1.0	1.0 0.0 3.0	3.0 2.0 3.0			

3.0

2.0

1.0

3.0

0.0

0.0

40

40

2.0

0.0

> no single method fits well for all purposes

3D Surface Seismics and Offshore Wind Farms

NSTA 2022

3D Surface Seismics and Offshore Wind Farms

- > general traffic restrictions in wind-farms for ships > 24 m (e.g. seismic survey vessels)
- > draft KSpTG gives priority to offshore-wind development over CO₂ storage

3D Surface Seismics and Offshore Wind Farms

> Promising developments:

- spot seismics (Greensand)
- passive seismics
- (permanent) ocean bottom networks of seismic receivers
- deployment of receivers by autonomous underwater vehicles
- fibre optical methods

More on marine spatial planning and CO₂ storage:

Geostor WP 5.1, Rütters et al. (2024)

UK Offshore Wind and CCUS Co-Location Forum

Site-Specific Monitoring Plans

> I.a. should facilitate precise localization of CO₂ in the subsurface (KSpG)

> How precise? Will depend on monitoring efforts.

> No provisions or guidance on adequate plans by implementation regulations according KSpG, yet

Site-Specific Monitoring Features

- > ~8 million possible combinations of features for 14 selected criteria
- > uniqueness of sites suggest to abstain from universal provisions in regulations

storage option saline aquifer			oil reservoir		gas reservoir		
storage structure	cture closed			open			
sovereign territory	coastal water			EEZ			
storage size	pilot or demonstration			full scale commercial			
well infrastructure	fixed platform		floating platform		seafloor installation		
water depth	tidal waters		open shelf		continental slope		
potential pathwas	faults wells		cap rocks		spill points		
project phase	construction and norma baseline		l operation irregular incid		dent post-injection, post-abandonment		
monitoring aim	storage operation		HSE		accounting of emission certificates		
fluid substance	CO ₂ stream forma water		tion and sea residual gas		oil		
processes	fluid migration geo-n		echanical	geo-chemical		biological	
compartment storage complex		overburden		waer column		seafloor	
CO ₂ leakage rate	low interm		nediate	high		blowout	
leakage type diffuse		distributed dicrete vents		single vent			

Quantification of Leakage

> Seep and blow out of natural CO₂

Quantification of Leakage

- > leakage out of storage complex (KSpG) → operator reports kind and magnitude
- > into atmosphere or water columns (Monitoring Directive) \rightarrow hourly determination of the mass of CO₂, according to monitoring plan
- > Tolerance for measurement uncertainties of 7.5 %
- > Excess uncertainty would have to be reported as emission
- > 19 published rates for blow-outs; reported uncertainties raging from 6 906 %

Detection & Quantification of Fugitive Emissions

- > Fugitive emissions (Monitoring Directive): irregular, not localized, too diverse, or too small and too many to be measured individually
- > Detection threshold, from North Sea experiments 10 50 t/a (Dean et al. 2022)

Quantification of Fugitive Emissions

- > Monitoring of potential sources of diffuse emissions required.
- > Quantification by calculation or measurement,
- > based on documented "industry best practice guidelines".
- > Uncertainty levels 7.5%; (10 %, if proven to be technically or economically impossible)
- > terrestrial Laacher See, e.g. 24 % uncertainty of CO₂ flux (dissolved fraction only)

Conclusions

- > Whether monitoring plans are sufficient to fulfil all monitoring tasks, will depend on sitespecific conditions and possibly on requirements specified in regulations or in permits.
- > Experience lacs for practical monitoring of full-scale operational storage sites, permitted under the EU CO₂ Storage Directive 2009/31/EG.
- > In principle, adequate monitoring of marine storage sites in the German EEZ appears feasible with currently available technologies.
- > Novel monitoring tools and concepts are required to exploit storage potential in marine areas serving multiple purposes.

