

Numerical modelling of CO₂ storage in sandstone reservoirs below the German North Sea Sector

Firdovsi Gasanzade and Sebastian Bauer

Geohydromodelling, Christian-Albrecht University of Kiel

GEOSTOR Annual Meeting 2023. Hamburg 25.09.2023

Aims and Methods of AP 2.3, AG Geohydromodellierung

Aims:

- > Quantification of the achievable dynamic storage capacity of a potential storage site
 - Determination of static and achievable dynamic storage capacities for selected sites A1 and B1
 - Optimisation of injection schemes under geological and site specific geomechanical limits

> Quantification of induced long-term, as well as large-scale effects

- Prognosis of transient 3D CO₂ phase distributions and induced pressure changes
- Investigations of formation water displacement and interferences with other types of use
- Quantification of subsurface space required as a basis for site monitoring and subsurface spatial planning

Methods:

- > Development of consistent and efficient workflows
 - Automated conversion of geological models to reservoir models and generation of code input
 - Efficient simulation by parallelisation
 - Code and workflow verification
 - Model transfer for geomechanical simulations

> Numerical simulation for selected sites A1 and B1

- Representation of governing physical processes during CO₂-injection
- Construction of suitable reservoir models and their parameterisation
- Scenario analysis for uncertainty and injection variations

AP 2.3: Prior work

<u>Tools</u> Platform SKUA-GOCAD (BGR)	Geological model	Input/Output Geology & Geophysics & Petrophysics Lithological boundaries Static structural model	<u>Results</u>
Platform Petrel	Reservoir model two phase immiscible flow problem near-well single-phase flow capillary forces pressure management injection rates and scheme	Reservoir distribution Initial and boundary conditions Fluid-rock physics	Static and dynamic site specific capacities
Simulator Reference/Open-source Pre-processing	well positioning parallel and HPC		 Suitable injection schemes Far field pressure and flow effects
Mesh converter Simulator Reference FEM code	Scenario Analysis Geological parameters Injection schemes	 Volume estimation Field pressure & CO₂ plume Competition of buoyancy, capillary, and viscous forces 	Uncertainty evaluation
	Large scale setting	Geomechanical model Parameteres remaping for FEM One-way coupling]

Prior work:

- > Developed consistent workflow to set up reservoir models, based on the geological model from BGR, and pass the model on the AP 3 for geomechanical considerations
- > Code validation and HPC set-up
- > Large-scale boundary conditions and method for static trap characterization

Updated reservoir model site A

- > Petrophysical setting adjusted according to well log
- > Large-scale boundary conditions are considered outside of model area:
 - Northern boundary exhibits a tendency towards 150 km
 - Southern and Western boundaries are characterised by a barrier within a range of 8-10 km
- > Hysteresis included
- > Fault systems deactivated > no leakage assumed

Updated reservoir model for site A

- > Updated static capacity estimates for sub-traps of site A
- > Only combining sub-traps will yield envisaged storage target

6

Towards injection strategy development

> Well placement:

- Equidistant placement
- Within closure
- Along spill depth
- > Injection rate:
 - Maximum rate
 - Constant rate
- > Well type:
 - Vertical
 - Deviated or Horizontal
 - Multi-segment

Individual trap injection potential: Henni South

Injection strategies under BHP pressure limit

Z: 5

Time Step: 0/14 01.Jan 2028

-- RUN3_N_TRAP_8W_2KM_INJE --

Cell count. Total: 4 253 760 **Active:** 2 959 323 **Main Grid I,J,K:** 112, 180, 211 **Z-Scale:** 5

₽(y

Individual trap injection potential: Henni North

> Individual trap injection potential without flow rate limits

Cell Results: SGAS 0.71

- > CO₂ injection above the sub-trap spill line only does not allow to reach the injection target
- > Placing wells along the sub-trap spill line allows to reach the injection target.

An injection scheme needs to account for the long-term gas-phase movement within the trap

Henni North:

- Dynamic capacity
- Static capacity
- ✓ Comparison of static capacity with dynamic model results

Thank you for your attention!

contact: <u>Sebastian.Bauer@ifg.uni-kiel.de</u> Firdovsi.Gasanzade@ifg.uni-kiel

